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Abstract. We establish the relationship between distribution and fragmentation functions and the struc-
ture functions appearing in the cross-section of polarized 1-particle inclusive deep-inelastic scattering. We
present spectator model evaluations of these structure functions focusing on the case of an outgoing spin- 1

2

baryon. Distribution functions obtained in the spectator model are known to fairly agree at low-energy
scales with global parameterizations extracted from totally inclusive DIS data. Therefore, we expect it to
give good hints on the functional dependence of the structure functions on the scaling variables xB, z and
on the transverse momentum of the observed outgoing hadron, P h⊥. Presently, this dependence is not
very well known, but experiments are planned in the near future.

PACS. 13.60.Rj Baryon production – 12.39.-x Phenomenological quark models

1 Introduction

Totally inclusive deep-inelastic scattering (DIS) in the
past years provided us with rather precise knowledge of
the distribution functions of the proton and the neu-
tron, helping us to understand their inner structure and
raising questions yet unanswered. Semi-inclusive DIS dis-
plays even richer characteristics. Detecting at least one of
the hadrons produced in the high-energy scattering pro-
cess and measuring its momentum, one is then sensitive
not only to the distribution of partons inside the tar-
get hadron, but also to the mechanism of hadronization,
through which a quark gives rise to a jet of new hadrons.
We are then able to measure not only the distribution
functions, but also the so-called fragmentation functions.
Neither the distribution nor the fragmentation functions
can be calculated from first principles within perturbative
QCD, because they belong to the non-perturbative realm
of bound states. Therefore, models are required.

If only the dominant light-cone component of the mo-
mentum of the outgoing hadron is measured, its trans-
verse components being integrated over, then the struc-
ture functions appearing in cross-sections will be products
of a distribution and a fragmentation function. The al-
ready established knowledge of the distribution functions
enables one to extract the shape of the fragmentation func-
tions (cf. [1]) and to compare it with other results coming
from different experiments, such as electron-positron an-
nihilation.

a e-mail: bacchett@nat.vu.nl

On the other hand, if we manage to measure the trans-
verse momentum of the outgoing hadron we have the op-
portunity to study some new interesting distribution and
fragmentation functions. In particular, already to lead-
ing order in an expansion in powers of 1

Q we have access
to chiral odd and time-reversal odd functions, as well as
functions related to the transverse momentum carried by
quarks relative to their parent hadrons momentum [2].
These functions are presently considered to be very inter-
esting and their experimental measurement is in progress
(HERMES, COMPASS, RHIC). The only major incon-
venience of dealing with cross-sections differential in the
transverse momentum of the outgoing hadron is that the
structure functions are no more simple products of a dis-
tribution and a fragmentation function, but rather convo-
lutions of those.

In this context model evaluations of the structure func-
tions can be very useful. The spectator model proved to be
in qualitative agreement with the known (transverse mo-
mentum integrated) distribution and fragmentation func-
tions evolved at low energies [3]. Therefore, we expect it to
give reasonable estimates for the convolution integrals in
semi-inclusive DIS, provided that the inclusion of trans-
verse momentum of partons does not spoil factorization
properties, as it is usually assumed [4].

Although our results cannot be considered as highly
precise predictions of experimental quantities due to the
limitations of the model, we believe them to be rele-
vant, since the spectator model is one of the very few
tools available to estimate intrinsic transverse momentum
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distribution without a priori assuming a specific form
(e.g., Gaussian).

The model incorporates only valence quark distribu-
tion and fragmentation, neglecting the presence of sea-
quarks, gluons and evolution. Therefore, it is supposed to
reproduce the shape of the valence-quark distribution and
fragmentation at a low energy scale, which is not known a
priori. To give an estimate of this scale, one can compare
the total momentum carried by quarks as given by the
spectator model with the same quantity as given by pa-
rameterizations of the distribution functions at a known
energy scale. Such a comparison suggests that the spec-
tator model is valid at an energy scale of about 0.2–0.3
GeV.

In principle, the results we obtain need to be evolved
to higher energy scales by means of evolution equations
for a final comparison with experiment. Evolution equa-
tions for transverse momentum dependent functions are
not yet known. In this article, therefore, we refrain from
taking into account radiative corrections. Nevertheless,
we are confident to describe correctly the main features
and properties of the structure functions at low (intrinsic)
transverse momentum, since perturbative corrections are
expected to affect mainly the high transverse momentum
tails of these functions.

The spectator model is a semi-phenomenological
model, which relies mainly on the idea of describing the
hadron as an ensemble of a free parton (struck in the scat-
tering process) and a fictitious, unphysical particle, the
spectator, with the right quantum numbers.

The model, at least in its present version, cannot de-
scribe time-reversal odd functions, since it does not in-
corporate final state interactions. On the other hand, the
advantages of the model resides in the fact that it is sim-
ple, it is covariant and it gives a clear estimate of the
distribution of partonic transverse momentum. Last but
non least, the model can be treated in wide parts analyti-
cally. Some numerical integrations are required only when
the cross-section is kept differential also in the transverse
momentum of the produced hadron.

In sect. 2 we briefly review the general formalism uti-
lized to treat semi-inclusive DIS, with emphasis on the
structure functions calculable using the spectator model.
In sect. 3 we present the basic properties of the model
and we give the results of our analysis, highlighting what
are the broad features that could possibly be observed in
experiments.

2 Semi-inclusive DIS

The cross-section for a semi-inclusive DIS event can be
written in terms of the contraction between a lepton and
a hadron tensor. For instance in the target rest frame we
can make use of the formula [5]

dσ
dE′ dΩ d3Ph

=
α2

Q4

E′

E
LµνW

µν , (1)

where Ph is the momentum of the outgoing hadron, Q2 =
−q2 ≥ 0 is the absolute value of the virtuality of the ex-
changed photon, α = e2/4π is the fine structure constant,
E and E′ are the energy of the incident lepton before and
after the collision, respectively. Lµν is the lepton tensor
and Wµν is the hadronic tensor.

Following a purely phenomenological approach, the
hadronic tensor can be parameterized using scalar struc-
ture functions. A priori, the maximum number of inde-
pendent structure functions in an arbitrary DIS process
is 16. Since we will be interested only in electromagnetic
scattering, this number is reduced to 9 by the gauge in-
variance condition, qµW

µν = qνW
µν = 0. A convenient

set of functions is formed by the spherical basis structure
functions (see, e.g., [6]).

In the spherical basis, constraints coming from angu-
lar momentum conservation take a simpler form. From
now on, we want to consider only leading terms in an
expansion over 1

Q . In the case of polarized semi-inclusive
scattering, helicity conservation considerations allow us to
say that five of the structure functions vanish at leading
order, leaving only four non-zero structure functions. The
complete form of the hadronic tensor at leading order is
then

Wµν = −gµν⊥
WT

2
+ i εµν⊥

W ′
TT

2

+
(
2P̂µh⊥P̂ νh⊥ + gµν⊥

) WTT

2
+ P̂

{µ
h⊥ε

ν}ρ
⊥ P̂h⊥ ρ

WTT

2
, (2)

where the curly brackets indicate symmetrization of the
indices. For the definitions of the tensor structures appear-
ing in the formula we need to define a normalized time-like
and a normalized space-like vector

t̂µ =
2xB

Q

(
Pµ − qµ

P · q
q2

)
, q̂µ =

qµ

Q
, (3)

by means of which we can define the structures

gµν⊥ = gµν + q̂µq̂ν − t̂µt̂ν , (4)

εµν⊥ = εµναβ q̂αt̂β , (5)

P̂µh⊥ =
gµρ⊥ Ph ρ
|gµρ⊥ Ph ρ| . (6)

By calculating the contraction between leptonic and
hadronic tensor we can eventually write the following for-
mula for the cross-section [6] in the target rest-frame:

dσ
dE′ dΩ d3Ph

= σM
Q2

2|q|2
1
ε

×
{
WT+ε

(
WTT cos 2φ+WTT sin 2φ

)
+λe

√
1−ε2W ′

TT

}
, (7)

where λe is the helicity of the electron, φ is the angle
between the scattering plane and the outgoing hadron’s
momentum (see fig. 1) and where

σM =
4α2E′2

Q4
cos2

(
θ

2

)
,

ε−1 = 1 + 2
|q|2
Q2

tan2

(
θ

2

)
, (8)
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Fig. 1. Sketch of the angles used in the description of the
hadronic tensor. The transverse parts of the spin vector of the
target, S⊥, and the momentum and spin vector of the observed
hadron, Ph⊥ and Sh⊥, define the angles β, φ and βh, respec-
tively.
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Fig. 2. Diagrammatic representation of semi-inclusive DIS.

θ being the scattering angle of the electron.
When interested in polarization observables of the out-

going particle and/or double polarization measurements
one can introduce a compact notation involving the above
cross-section and the various observables according to
ref. [7]. We do not reproduce it because in the follow-
ing we only deal with the different structure functions en-
tering the cross-section as well as the expression for the
polarization observables. The dominant contribution to
the structure functions can be calculated from the cut-
diagram shown in fig. 2, representing the hadronic part of
a DIS event. According to the usual factorization assump-
tion, the diagram is divided into a hard partonic scatter-
ing amplitude and two soft parts, Φ and ∆ in fig. 2, called
correlation functions. The dominant momentum direction
in the upper (lower) part is given by the direction of the
outgoing (target) hadron momentum, Ph (P ). Quark mo-

menta are almost collinear to their parent hadrons allow-
ing for small transverse components. Using Feynman rules
we can give an explicit formula describing the diagram of
fig. 2, which represents the hadronic tensor:

2MWµν =
∫

dk+ d2kT dp− d2pT δ(2)(pT + qT − kT )

×
∑
q

e2
q Tr[Φq γµ∆q γν ]

∣∣∣∣∣∣p+=xBP
+

k−=P−
h /z

, (9)

where p and k are the momenta of the quarks respectively
before and after absorbing the photon, and the index q
denotes quark flavor.

In this formula we use light-cone components of vec-
tors in an infinite momentum frame of reference where
the “+” direction is given by the momentum of the target
hadron, P , the “−” direction is given by the momentum
of the outgoing hadron, Ph, and the photon momentum
is purely spatial. In this frame of reference the incident
photon has a transverse component, qT . In alternative,
one can work with frames of reference where the photon
does not have transverse components, which are particu-
larly convenient from the experimental point of view. In
such frames the outgoing hadron’s momentum acquires a
transverse component, which we will denote as P h⊥. It
can be shown that the relation between these transverse
components is [2]:

qT = −P h⊥
z

. (10)

In eq. (9) the already mentioned correlation functions ap-
pear. They are second-rank Dirac tensors defined as [8]

Φq(mn)(p, P, S) =
∫

d4ξ

(2π)4
e−ip·ξ

×〈P, S|ψ̄q(n)(ξ)L[ξ, 0; path]ψq(m)(0)|P, S〉, (11)

∆q(mn)(k, Ph, Sh) =
∫

d4ξ

(2π)4
e+ik·ξ

×〈0|L[ξ, 0; path]ψq(m)(ξ)|Ph, Sh〉〈Ph, Sh|ψ̄q(n)(0)|0〉, (12)

which connect parton field operators with hadron states,
and therefore depend on momenta of the quarks and mo-
menta and spin vectors (S and Sh) of the hadrons. The
quark field operators are accompanied by gauge link oper-
ators, L, needed to render the correlation functions color
gauge-invariant.

If we decompose each correlation function on a basis
of 16 Dirac structures, Γi, we get the following result:

2MWµν =
∑
i,j

Tr[Γ iγµΓ jγν ]
4

2z

×
∫

d2kT d2pT δ(2)(pT+qT−kT )
∑
q

e2
q Φ[Γi]

q ∆[Γj ]
q , (13)
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where we defined

Φ[Γ i]
q (xB,pT ) =

1
2

∫
dp− Tr[ΦqΓ i]

∣∣∣∣
p+=xBP+

(distribution functions), (14)

∆[Γ i]
q (

1
z
,kT ) =

1
4z

∫
dk+ Tr[∆qΓ i]

∣∣∣∣
k−=

P
−
h
z

(fragmentation functions). (15)

As a last step, the distribution and fragmentation func-
tions are usually divided in several components, named f1,
g1L, g1T , . . . for what concerns the distribution functions,
or D1, G1L, G1T , . . . for what concerns the fragmenta-
tion functions. We will not pursue the definition of all the
possible functions, for which we simply refer to [2]. Note
that each function should always carry its flavor index, q,
although in the rest of this section we are going to skip it.

Using eq. (13) and comparing it with eq. (2) we can
establish relations connecting structure functions to dis-
tribution and fragmentation functions. In the following
equations we will use the frame of reference and the an-
gles specified in fig. 1. We chose to fix the x-axis in the
direction of P h⊥ to simplify the formulae. Note that we do
not lose generality because in the hadronic tensor there is
no dependence on the angle φ due to cylindrical symmetry
around the z-axis.

To be more concise, we will denote the convolution
integral appearing in the hadronic tensor and the summa-
tion over quark flavors with the following notation:

I { . . . } =
2z
M

∫
dkx dky dpx dpy

× δ

(
px − |Ph⊥|

z
− kx

)
δ(py − ky)

∑
q

e2
q . . . , (16)

where the specific form of the δ-functions is due to rela-
tion (10) and to the particular choice of our x-axis.

We are going to divide the structure functions in vari-
ous contributions arising from particular polarization con-
ditions. Therefore, we are going to label each contribution
with two indices, the first one referring to the polarization
of the target (U for unpolarized, L for longitudinally po-
larized, T for transversely polarized) and the second one
referring to the polarization of the outgoing hadron. We
will not take into account the cases when both hadrons
are polarized.

The resulting form of the structure functions is

WT (xB, z, Ph⊥) = W [UU]

T (xB, z, Ph⊥)

+|Sh⊥| sinβh W [UT]

T (xB, z, Ph⊥), (17)

W [UU]

T (xB, z, Ph⊥) = I { f1D1 } , (18)

W [UT]

T (xB, z, Ph⊥) = I
{

kx
Mh

f1D
⊥
1T

}
, (19)

WTT (xB, z, Ph⊥) = |S⊥| sinβ W [TU]

TT (xB, z, Ph⊥), (20)

W [TU]

TT (xB, z, Ph⊥) =

I
{

kx
Mh

h1TH
⊥
1 +

kypypx + kxpypy
2M2Mh

h⊥
1TH

⊥
1

}
, (21)

W ′
TT (xB, z, Ph⊥) =

λ W ′ [LU]

TT (xB, z, Ph⊥)

+|S⊥| cosβ W ′ [TU]

TT (xB, z, Ph⊥) + λh W ′ [UL]

TT (xB, z, Ph⊥)

+|Sh⊥| cosβh W ′ [UT]

TT (xB, z, Ph⊥), (22)

W ′ [LU]

TT (xB, z, Ph⊥) = I { g1LD1 } , (23)

W ′ [TU]

TT (xB, z, Ph⊥) = I
{ px

M
g1TD1

}
, (24)

W ′ [UL]

TT (xB, z, Ph⊥) = I { f1G1L } , (25)

W ′ [UT]

TT (xB, z, Ph⊥) = I
{

f1
kx
Mh

G1T

}
, (26)

WTT (xB, z, Ph⊥) =

λ W
[LU]

TT (xB, z, Ph⊥) − |S⊥| cosβ W
[TU]

TT (xB, z, Ph⊥), (27)

W
[LU]

TT (xB, z, Ph⊥) = I
{
kxpx − kypy

MMh
h⊥

1LH
⊥
1

}
, (28)

W
[TU]

TT (xB, z, Ph⊥) =

I
{

kx
Mh

h1TH
⊥
1 +

kxpxpx − kypypx
M2Mh

h⊥
1TH

⊥
1

}
. (29)

In the previous formulae λ (λh) denotes the helicity of
the target (outgoing) spin-1

2 hadron. The direction of the
transverse part of the spin vector S⊥ (Sh⊥) with refer-
ence to the hadron production plane defines the angle β
(βh) as illustrated in fig. 1. The values of the components
of the target spin-vector S are known from the prepara-
tion of the experiment, whereas those of the Sh have to
determined from final state polarimetry. For instance, for
self-analyzing hadrons like Λ baryons, the distribution of
the products of the weak decay allows the extraction of
Sh.

The distribution functions (small letters) are under-
stood to be functions of the variables xB and p2

T , while
the fragmentation functions (capital letters) are under-
stood to be functions of 1

z and k2
T .

The functions D⊥
1T and H⊥

1 are time-reversal odd and
they cannot be studied in the framework of our model.
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For this reason we will only be able to calculate the first
term of the structure function WT and the full structure
function W ′

TT .
Due to eq. (10), integrating over the outgoing hadron

transverse momentum, P h⊥, corresponds to integrating
over z2qT . Performing this integration leads to a decon-
volution of the right-hand side of eq. (13). Consequently,
the integrals over pT and kT can be performed separately
for the distribution and fragmentation functions. There-
fore, the structure functions integrated over P h⊥ reduce
to

WT (xB, z) =
1
M

2z f1(xB)D1( 1
z ), (30)

W ′
TT (xB, z) =

λ

M
2z g1(xB)D1( 1

z )

+
λh
M

2z f1(xB)G1( 1
z ), (31)

where the new pT and kT -independent distribution and
fragmentation functions are defined as:

f1(xB) ≡
∫

d2pT f1(xB,p2
T ),

g1(xB) ≡
∫

d2pT g1L(xB,p2
T ),

D1( 1
z ) ≡ z2

∫
d2kT D1( 1

z ,k
2
T ),

G1( 1
z ) ≡ z2

∫
d2kT G1L( 1

z ,k
2
T ). (32)

At this point it is worth to mention that color gauge invari-
ance requires the insertion of link operators in eqs. (14,15)
and eqs. (32), whose paths run along a light-like direction
from infinity to the point where quark fields are calcu-
lated. In the present article we assume that an appropriate
choice of gauge is possible to reduce all link operators to
unity. For transverse momentum dependent distribution
and fragmentation functions this issue is not completely
settled in the literature. Some subtle problems can appear
at next-to-leading order in 1/Q. For a discussion of details
we refer to [9].

3 Calculation of structure functions

3.1 The spectator model

For a numerical evaluation of the structure functions we
will employ the distribution and fragmentation functions
as estimated with a spectator model [3]. The basic as-
sumption of the spectator model is that the target hadron
can be divided into a quark and an effective spectator state
with the required quantum numbers, which is treated to a
first approximation as being on-shell with a definite mass.
In the case of a baryon target, this second particle is a
diquark.

The same idea applies to the hadronization process:
the quark fragments into a jet, from which one hadron is

eventually detected; the remnants of the jet are treated
effectively as an on-shell spectator state. If the detected
hadron is a baryon, the second particle is an anti-diquark.

The vertex coupling the baryon to quark and diquark
includes a form factor preventing the quark from being
far off-shell. The large p2-behavior of the form factor is
controlled by a parameter Λ.

We quote the analytic form of the distribution and
fragmentation function we are going to use for numerical
evaluation of the structure functions as obtained in [3].
The diquark’s spin in the simplest approach can be either
0 (scalar diquark with mass Ms) or 1 (axial vector diquark
with mass Ma). For both cases the functions can be cast in
the same analytic form where only some parameters take
different values. Therefore, we label the functions with an
additional index i ∈ {s, a} to distinguish between the two
cases. The functions we consider are

f i1(xB,p2
T ) =

n2
i (1 − xB)3

16π3

(m + xBM)2 + p2
T

(p2
T + l2i (x))4

, (33)

gi1L(xB,p2
T ) = ai

n2
i (1 − xB)3

16π3

(m + xBM)2 − p2
T

(p2
T + l2i (x))4

, (34)

gi1T (xB,p2
T ) = ai

n2
i (1 − xB)3

16π3

2M(m + xBM)
(p2
T + l2i (x))4

, (35)

Di1(
1
z ,k

2
T ) =

N2
i (1 − z)3

16π3z4

(m + 1
zMh)2 + k2

T

(k2
T + L2

i (z))4
, (36)

Gi1L(
1
z ,k

2
T ) = ai

N2
i (1 − z)3

16π3z4

(m + 1
zMh)2 − k2

T

(k2
T + L2

i (z))4
, (37)

Gi1T ( 1
z ,k

2
T ) = ai

N2
i (1 − z)3

16π3z4

2Mh(m + 1
zMh)

(k2
T + L2

i (z))4
, (38)

with the spin factors as = 1 and aa = − 1
3 , and where we

made use of the newly defined functions:

l2i (xB) = Λ2(1 − xB) + xBM2
i − xB(1 − xB)M2, (39)

L2
i (z) = Λ2(1 − 1

z
) +

1
z
M2
i −

1
z
(1 − 1

z
)M2

h . (40)

The values of the parameters of the model have been de-
termined to be

Λ = 0.5 GeV,

Ms = 0.6 GeV, Ma = 0.8 GeV, (41)
m = 0.36 GeV.

The functions depend only weakly on the chosen value of
the quark mass m. The normalization factors ni and Ni
are fixed by the conditions∫

dxB d2pT f i1(xB,p2
T ) = 1,

∫
dz d2kT z

(
z2Di1(

1
z ,k

2
T )

)
= 1. (42)

Note that for the fragmentation function the normaliza-
tion condition is put on the first moment.
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Fig. 3. Dependence of the structure function W [UU]
T on xB and

z at Ph⊥ = 0.

At this point, it is appropriate to make some com-
ments on the results of the model as compared to a Gaus-
sian distribution of intrinsic transverse momentum. First
of all, the spectator model is covariant, while the Gaussian
approach is not. Secondly, once the parameters are cho-
sen to properly describe longitudinal momentum distribu-
tions, the model intrinsically describes transverse momen-
tum distributions without any further “ad hoc” assump-
tion. These distributions can be significantly different from
the Gaussian ones, as we will show in sect. 3.2, not only
in the behaviour at high transverse momentum, which
is anyway affected by perturbative corrections. Moreover,
the model suggests different transverse momentum depen-
dences for different distribution and fragmentation func-
tions, whereas a Gaussian approach does not.

We gave the distribution and fragmentation functions
for scalar and axial-vector diquarks. We must now address
the problem of defining the hadron state in terms of the
quark-diquark content. From a group theory analysis, for
a proton, a neutron and a Λ-particle the results are [10]:

|p〉 = 1√
2
|u, S〉 + 1√

6
|u,A〉 − 1√

3
|d,A〉,

|n〉 = 1√
2
|d, S〉 − 1√

6
|d,A〉 + 1√

3
|u,A〉, (43)

|Λ〉 = 1√
12
|u, S〉 − 1√

12
|d, S〉

− 2√
12
|s, S〉 + 1√

4
|u,A〉 − 1√

4
|d,A〉.

Using these results, the probability of finding an up, down
or strange quark in one of these hadrons is related to the
probability of finding a scalar or axial-vector diquark in
the following way:

fp→u1 = 3
2f
s
1 + 1

2f
a
1 , fp→d1 = fa1 ,

fn→u1 = fa1 , fn→d1 = 3
2f
s
1 + 1

2f
a
1 ,

fΛ→u1 = 1
4f
s
1 + 3

4f
a
1 , fΛ→d1 = 1

4f
s
1 + 3

4f
a
1 ,

fΛ→s1 = fa1 .

(44)

Overall normalizations ensure the correct number sum
rules for valence quarks in the baryons. Analogous for-
mulae hold for all other distribution functions and for the
fragmentation functions as well.

Once we have computed the distribution and fragmen-
tation functions for a scalar and axial-vector diquark, we
can eventually calculate the argument of the convolutions
occurring in the structure functions for a given process. At
this stage, the (charge squared weighted) sum over quark
flavors is rewritten in a weighted sum over the different
diquark species:

∑
q

e2
qf
q
1D

q
1 =

∑
i,j=s,a

cij f
i
1D

j
1, (45)

where the coefficients depend on the type of hadrons in-
volved.

For instance, for the following processes:

– e p → e′ ΛX

4
9
fp→u1 Du→Λ1 +

1
9
fp→d1 Dd→Λ1 =

1
6
fs1D

s
1 +

1
2
fs1D

a
1 +

1
12

fa1 D
s
1 +

1
4
fa1 D

a
1 ; (46)

– e p → e′ p′ X

4
9
fp→u1 Du→p1 +

1
9
fp→d1 Dd→p1 =

fs1D
s
1 +

1
3
fs1D

a
1 +

1
3
fa1 D

s
1 +

2
9
fa1 D

a
1 ; (47)

– e n → e′ ΛX

4
9
fn→u1 Du→Λ1 +

1
9
fn→d1 Dd→Λ1 =

1
24

fs1D
s
1 +

1
8
fs1D

a
1 +

1
8
fa1 D

s
1 +

3
8
fa1 D

a
1 ; (48)

– e n → e′ pX

4
9
fn→u1 Du→p1 +

1
9
fn→d1 Dd→p1 =

1
6
fs1D

a
1 +

2
3
fa1 D

s
1 +

5
18

fa1 D
a
1 . (49)

Analogous formulae apply to other combinations of distri-
bution and fragmentation functions.

In the following section we will concentrate only on
the first process. However, using appropriate coefficients
cij and appropriate hadron masses one can carry out the
calculations for any baryon-to-baryon process.

3.2 Numerical results for structure functions in
e p → e′ ΛX

In this section we present numerical results for structure
functions of the process e p → e′ ΛX obtained using the
distribution and fragmentation functions from the spec-
tator model. We concentrate on Λ production, since it is
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Fig. 4. Contour-plot of the structure function W [UU]
T for different values of Ph⊥ (GeV). Numbers inside the plot area denote

the height of maxima. Spacing between isometric lines corresponds to 10 % of maximum height.

possible to determine its polarization from the kinematics
of its decay. We will consider separately different experi-
mental situations with or without polarization of the tar-
get and of the produced Λ. In this way the various terms
in eq. (17) and eq. (22) can be accessed.

1 – Unpolarized proton target and unpolarized produced
Λ. We performed the calculation of the structure function
W [UU]

T of eq. (18) using f1 from eq. (33) and D1 from
eq. (36), with the coefficients cij as specified in eq. (46).
After integrating over kx and ky by using the δ-function,
we obtain

W [UU]

T (xB, z, Ph⊥) =
∑
i,j=s,a

cij
n2

iN
2
j

2M (2π)6 (1 − xB)3
(

1 − z

z

)3

×
∫

dpx dpy
(m + xBM)2 + p2

x + p2
y[

p2
x + p2

y + l2i (x)
]4

×
(
m + 1

zMh

)2 +
(
px − |Ph⊥|

z

)2

+ p2
y[(

px − |Ph⊥|
z

)2

+ p2
y + L2

j (z)
]4 . (50)

The remaining integration has been carried out numeri-
cally making use of an adaptive multi-dimensional inte-
gration method. As we remarked before, integrating out
Ph⊥ leads to a deconvolution and, consequently, the trans-
verse momentum integration can be performed separately
for the distribution and fragmentation functions as shown
in eq. (30). With the form of the functions given by the
spectator model the integrations can be carried out ana-
lytically [3]. Comparison of those analytical results with
the outcome of a numerical integration has been used as a
check of consistency. The results are displayed in the plots.
Figure 3 shows the structure function W [UU]

T at Ph⊥ = 0.
Figure 4 shows the contour-plot of the same function at
three different values of Ph⊥. An interesting feature is that
when Ph⊥ increases, the position of the peak slowly moves
to lower values of z, while there is no change in the x posi-
tion of the peak. In other words, a hadron produced with
a higher transverse momentum is more likely to carry a
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Fig. 5. Dependence of the structure function W [UU]
T on the

outgoing hadron transverse momentum, Ph⊥ (measured in
GeV) and the fractional momentum xB.

lower fraction of the longitudinal momentum of the orig-
inal quark. We remark that this behavior is due to the
kinematical conditions imposed by momentun conserva-
tion. In fig. 5 we show the result obtained by integrating
the structure function over z.

In fig. 6 we show the result of integrating the struc-
ture function over xB and we compare it with the same
structure function obtained by assuming a Gaussian dis-
tribution of transverse momentum, i.e. (cfr. [2])

W [UU]

T (z, Ph⊥) =

2π
∑
i,j=s,a

cij D
j
1(z)

1
z2

G
(
Ph⊥
z

; 〈|pT |〉2 + 〈|kT |〉2
)

, (51)

where

G
(
Ph⊥
z

; 〈|pT |〉2 + 〈|kT |〉2
)

=

1
π (〈|pT |〉2 + 〈|kT |〉2) exp

(
− P 2

h⊥
z2(〈|pT |〉2 + 〈|kT |〉2)

)
.

We chose the values of 〈|pT |〉 and 〈|kT |〉 to be equal to 0.5
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outgoing hadron transverse momentum, Ph⊥ (measured in
GeV) and the fractional momentum z: (a) spectator model,
(b) Gaussian distribution with 〈|pT |〉 = 〈|kT |〉 = 0.5 GeV.

GeV. Higher values produce a broader distribution. The
behaviour of the structure function shows clear differences
between the diquark model and the Gaussian predicitions,
especially in the low-z region. We have checked that this
holds true for different assumed values for 〈|pT |〉 and 〈|kT |〉
in a realistic range. Finally, we can integrate over both z
and xB at the same time, thereby obtaining the depen-
dence of the structure function W [UU]

T on Ph⊥ alone. In
fig. 7 we present the result of this integration as com-
pared to the results coming from a Gaussian ansatz with
〈|pT |〉 = 〈|kT |〉 = 0.3 GeV and 〈|pT |〉 = 〈|kT |〉 = 1 GeV .
The diquark model shows a quite distinct behaviour with
respect to the first Gaussian, while it is not very different
from the second one.

2 – Longitudinally polarized proton target and unpo-
larized produced Λ. In this case, we need to calculate
the structure function W ′ [LU]

TT of eq. (23). Using eq. (34)
and eq. (36) and integrating over kx and ky using the δ-
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Fig. 7. Dependence of the structure function W [UU]
T on the

outgoing hadron transverse momentum, Ph⊥ (GeV), from the
spectator model (solid line) and Gaussian ansatz with 〈|pT |〉 =
〈|kT |〉 = 0.3 GeV (long-dashed line) and 〈|pT |〉 = 〈|kT |〉 = 1
GeV (short-dashed line).
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functions, we obtain the formula

W ′ [LU]

TT (xB, z, Ph⊥) =
∑
i,j=s,a

cij ai
n2

iN
2
j

2M (2π)6 (1 − xB)3
(

1 − z

z

)3

×
∫

dpx dpy
(m + xBM)2 − p2

x − p2
y[

p2
x + p2

y + l2i (x)
]4

×
(
m + 1

zMh

)2 +
(
px − |Ph⊥|

z

)2

+ p2
y[(

px − |Ph⊥|
z

)2

+ p2
y + L2

j (z)
]4 . (52)

Figure 8 shows the structure function W ′ [LU]

TT at Ph⊥ = 0.
Figure 9 shows the contour-plot of the same function at
three different values of Ph⊥. As in the case of W [UU]

T , for
increasing Ph⊥ the position of the peak moves to lower
values of z. Integration over z or xB produces a behavior
similar to the one shown in fig. 5. Integrating over both z
and xB we obtain the dependence of the structure function
W ′ [LU]

TT on Ph⊥ alone (fig. 10).
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3 – Transversely polarized proton target and unpolar-
ized produced Λ. Substituting the results coming from
eq. (35) and eq. (36) in eq. (24) and integrating over kx
and ky we obtain

W ′ [TU]

TT (xB, z, Ph⊥) =
∑
i,j=s,a

cij ai
n2

iN
2
j

2M (2π)6 (1 − xB)3
(

1 − z

z

)3

×
∫

dpx dpy
2 px (m + xBM)[
p2
x + p2

y + l2i (x)
]4

×
(
m + 1

zMh

)2 +
(
px − |Ph⊥|

z

)2

+ p2
y[(

px − |Ph⊥|
z

)2

+ p2
y + L2

j (z)
]4 . (53)

Figure 11 shows the structure function W ′ [TU]

TT at Ph⊥ =
0.4 GeV. Fig. 12 shows the contour-plot of the same func-
tion at three different values of Ph⊥. Again, as Ph⊥ in-
creases the position of the peak moves to lower values
of z.

Integrating over both z and xB we obtain the de-
pendence of the structure function W ′ [TU]

TT on Ph⊥ alone
(fig. 13).
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Fig. 11. Dependence of the structure function W ′ [TU]
TT on xB

and z at Ph⊥ = 0.4 GeV.

4 – Unpolarized proton target and longitudinally po-
larized produced Λ. Substituting the results coming from
eq. (33) and eq. (34) in eq. (25) and integrating over kx
and ky, we obtain

W ′ [UL]

TT (xB, z, Ph⊥) =
∑
i,j=s,a

cij aj
n2

iN
2
j

2M (2π)6 (1 − xB)3
(

1 − z

z

)3

×
∫

dpx dpy
(m + xBM)2 + p2

x + p2
y[

p2
x + p2

y + l2i (x)
]4

×
(
m + 1

zMh

)2 −
(
px − |Ph⊥|

z

)2

− p2
y[(

px − |Ph⊥|
z

)2

+ p2
y + L2

j (z)
]4 . (54)

Figure 14 shows the structure function W ′ [UL]

TT at Ph⊥ = 0
and at Ph⊥ = 0.5 GeV. In this case, the contributions
containing the negative aa factor play a larger role than
in the previous cases. For this reason, the significance of
the contour plots is reduced and we preferred to show 3-D
plots of the structure function.



140 The European Physical Journal A

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

xB

z

Ph = 1.

0.0568

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

xB

z

Ph = 0.1

0.210

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

xB

z

Ph = 1.9

0.00210

Fig. 12. Contour-plot of the structure function W ′ [TU]
TT for different values of Ph⊥ (GeV). Numbers inside the plot area denote

the height of maxima. Spacing between isometric lines corresponds to 10 % of maximum height.

0.2 0.4 0.6 0.8 1. 1.2 1.4 1.6 1.8 2.

0.01

0.02

0.03

0.04

0.05

Ph

W’TT

Fig. 13. Dependence of the structure function W ′ [TU]
TT on the

outgoing hadron transverse momentum, Ph⊥ (GeV).

Integrating over both z and xB we obtain the de-
pendence of the structure function W ′ [UL]

TT on Ph⊥ alone
(fig. 15).

5 – Unpolarized proton target and transversely polar-
ized produced Λ. Substituting the results coming from
eq. (33) and eq. (35) in the fourth term of eq. (22) and
integrating over kx and ky we obtain

W ′ [UT]

TT (xB, z, Ph⊥) =
∑
i,j=s,a

cij
n2

iN
2
j

2M (2π)6 (1 − xB)3
(

1 − z

z

)3

×
∫

dpx dpy
p2
x + p2

y + (m + xBM)2[
p2
x + p2

y + l2i (x)
]4

×
2

(
px − |Ph⊥|

z

) (
m + 1

zMh

)
[(

px − |Ph⊥|
z

)2

+ p2
y + L2

j (z)
]4 . (55)

Figure 16 shows the structure function W ′ [UT]

TT (we plot
−W ′ [UT]

TT for display convenience) at Ph⊥ = 0.4 GeV and
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Fig. 14. Dependence of the structure function W ′ [UL]
TT on xB

and z at two different values of Ph⊥.

Ph⊥ = 0.8 GeV. Integrating over both z and xB we obtain
the dependence of the structure function W ′ [UT]

TT on Ph⊥
alone (fig. 17).
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4 Conclusions

In this paper the structure functions appearing in the
cross-section of polarized one-particle inclusive deep-
inelastic scattering have been expressed in terms of distri-
bution and fragmentation functions. Suitable kinematic
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Fig. 17. Dependence of the structure function W ′ [UT]
TT on the

outgoing hadron transverse momentum, Ph⊥ (GeV).

conditions allow to extract selected structure functions
and thus to access particular combinations of distribution
and fragmentation functions.

We made use of a simple spectator model to calcu-
late the relevant structure functions involved in the cross-
section. Our analysis can be applied to any process in-
volving a baryonic spin-1

2 target and an outgoing spin-1
2

baryon. We chose to focus our attention on the process
ep → e′ΛX. Using our results it is possible to estimate
cross-sections for the cases when proton and Λ are both
unpolarized or when one of the two is polarized.

An important feature of the analysis we presented is
that we calculated the dependence of the cross-sections on
the transverse momentum of the outgoing hadron, Ph⊥.
The measurement of this variable gives access to two new
contributions to the structure functions. These contribu-
tions have never been observed so far, because they vanish
if the cross-section is integrated over Ph⊥. Furthermore,
the dependence of the cross-section on Ph⊥ indirectly tests
the distribution of partonic transverse momentum inside
the hadron. This distribution is largely unknown at the
moment.

The spectator model allows to study Ph⊥-dependent
cross-sections because it produces a well-defined, analyti-
cal form of transverse momentum distributions. Since the
model qualitatively agrees with totally inclusive measure-
ments, we expect it to give good hints on the Ph⊥ depen-
dence, as well. As shown in a brief comparison, the result-
ing Ph⊥-dependence is significantly different from the one
predicted for instance by a Gaussian ansatz.

In summary, we are confident that the presented es-
timate can reproduce the broad features of the structure
functions observable in semi-inclusive deep inelastic scat-
tering.
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